enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Formation and evolution of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Formation_and_evolution_of...

    For part of its red-giant life, the Sun will have a strong stellar wind that will carry away around 33% of its mass. [118] [123] [124] During these times, it is possible that Saturn's moon Titan could achieve surface temperatures necessary to support life. [125] [126] As the Sun expands, it will swallow the planets Mercury and Venus. [127]

  3. Planetary phase - Wikipedia

    en.wikipedia.org/wiki/Planetary_phase

    The superior planets, orbiting outside the Earth's orbit, do not exhibit a full range of phases since their maximum phase angles are smaller than 90°. Mars often appears significantly gibbous, it has a maximum phase angle of 45°. Jupiter has a maximum phase angle of 11.1° and Saturn of 6°, [1] so their phases are almost always full.

  4. Heliosphere - Wikipedia

    en.wikipedia.org/wiki/Heliosphere

    Because the Sun rotates once approximately every 25 days, the heliospheric magnetic field [11] transported by the solar wind gets wrapped into a spiral. The solar wind affects many other systems in the Solar System; for example, variations in the Sun's own magnetic field are carried outward by the solar wind, producing geomagnetic storms in the ...

  5. Heliospheric current sheet - Wikipedia

    en.wikipedia.org/wiki/Heliospheric_current_sheet

    The heliospheric current sheet, or interplanetary current sheet, is a surface separating regions of the heliosphere where the interplanetary magnetic field points toward and away from the Sun. [1] A small electrical current with a current density of about 10 −10 A /m 2 flows within this surface, forming a current sheet confined to this surface.

  6. Solar System - Wikipedia

    en.wikipedia.org/wiki/Solar_System

    If the Sun–Neptune distance is scaled to 100 metres (330 ft), then the Sun would be about 3 cm (1.2 in) in diameter (roughly two-thirds the diameter of a golf ball), the giant planets would be all smaller than about 3 mm (0.12 in), and Earth's diameter along with that of the other terrestrial planets would be smaller than a flea (0.3 mm or 0. ...

  7. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Planet orbiting the Sun in a circular orbit (e=0.0) Planet orbiting the Sun in an orbit with e=0.5 Planet orbiting the Sun in an orbit with e=0.2 Planet orbiting the Sun in an orbit with e=0.8 The red ray rotates at a constant angular velocity and with the same orbital time period as the planet, =.

  8. Magnetic braking (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Magnetic_braking_(astronomy)

    where n is the number of particles, m is the mass of the individual particle and v is the radial velocity away from the Sun, or the speed of the solar wind. Due to the high conductivity of the stellar wind, the magnetic field outside the sun declines with radius like the mass density of the wind, i.e. decline as an inverse square law. [4]

  9. Seasons on planets - Wikipedia

    en.wikipedia.org/wiki/Seasons_on_planets

    Given the different Sun incidence in different positions in the orbit, it is necessary to define a standard point of the orbit of the planet, to define the planet position in the orbit at each moment of the year w.r.t such point; this point is called with several names: vernal equinox, spring equinox, March equinox, all equivalent, and named considering northern hemisphere seasons.