enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    An alternative to explicitly modelling the heteroskedasticity is using a resampling method such as the wild bootstrap. Given that the studentized bootstrap, which standardizes the resampled statistic by its standard error, yields an asymptotic refinement, [13] heteroskedasticity-robust standard errors remain nevertheless useful.

  3. Glejser test - Wikipedia

    en.wikipedia.org/wiki/Glejser_test

    Step 3: Select the equation with the highest R 2 and lowest standard errors to represent heteroscedasticity. Step 4: Perform a t-test on the equation selected from step 3 on γ 1 . If γ 1 is statistically significant, reject the null hypothesis of homoscedasticity.

  4. Autoregressive conditional heteroskedasticity - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_conditional...

    Integrated Generalized Autoregressive Conditional heteroskedasticity (IGARCH) is a restricted version of the GARCH model, where the persistent parameters sum up to one, and imports a unit root in the GARCH process. [9]

  5. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    Autoregressive conditional heteroskedasticity (ARCH) models time series where the variance changes. Seasonal ARIMA (SARIMA or periodic ARMA) models periodic variation. Autoregressive fractionally integrated moving average (ARFIMA, or Fractional ARIMA, FARIMA) model time-series that exhibits long memory .

  6. Homogeneity and heterogeneity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Homogeneity_and...

    Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance ...

  7. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    If the data exhibit a trend, the regression model is likely incorrect; for example, the true function may be a quadratic or higher order polynomial. If they are random, or have no trend, but "fan out" - they exhibit a phenomenon called heteroscedasticity. If all of the residuals are equal, or do not fan out, they exhibit homoscedasticity.

  8. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Heteroscedasticity often occurs when there is a large difference among the sizes of the observations. A classic example of heteroscedasticity is that of income versus expenditure on meals. A wealthy person may eat inexpensive food sometimes and expensive food at other times. A poor person will almost always eat inexpensive food.

  9. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    Heteroscedasticity allows the variance to be dependent on x, which is more accurate for many real scenarios. For example, the variance of expenditure is often larger for individuals with higher income than for individuals with lower incomes.