Search results
Results from the WOW.Com Content Network
This equation uses the overall heat transfer coefficient of an unfouled heat exchanger and the fouling resistance to calculate the overall heat transfer coefficient of a fouled heat exchanger. The equation takes into account that the perimeter of the heat exchanger is different on the hot and cold sides.
Here, is the overall heat transfer coefficient, is the total heat transfer area, and is the minimum heat capacity rate. To better understand where this definition of NTU comes from, consider the following heat transfer energy balance, which is an extension of the energy balance above:
Q is the exchanged heat duty , U is the heat transfer coefficient (watts per kelvin per square meter), A is the exchange area. Note that estimating the heat transfer coefficient may be quite complicated. This holds both for cocurrent flow, where the streams enter from the same end, and for countercurrent flow, where they enter from different ends.
The total rate of heat transfer between the hot and cold fluids passing through a plate heat exchanger may be expressed as: Q = UA∆Tm where U is the Overall heat transfer coefficient, A is the total plate area, and ∆Tm is the Log mean temperature difference. U is dependent upon the heat transfer coefficients in the hot and cold streams. [2]
However, it is common to say ‘heat flow’ to mean ‘heat content’. [1] The equation of heat flow is given by Fourier's law of heat conduction. Rate of heat flow = - (heat transfer coefficient) * (area of the body) * (variation of the temperature) / (length of the material) The formula for the rate of heat flow is:
→ is the outlet temperature of heat transfer fluid (K) Heat balance calorimetry is considered an effective method for measuring heat, as it involves quantifying the heat entering and leaving the system through the heating/cooling jacket using the heat transfer fluid, whose properties are well known.
The role of a heat exchanger is to transfer heat between two mediums, so the performance of the heat exchanger is closely related to energy or thermal efficiency. [11] A counter flow heat exchanger is the most efficient type of heat exchanger in transferring heat energy from one circuit to the other [citation needed].
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...