Search results
Results from the WOW.Com Content Network
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]
The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [2] The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. [3]
Basic reproduction number: number of infections caused on average by an infectious individual over entire infectious period: epidemiology: Body fat percentage: total mass of fat divided by total body mass, multiplied by 100: biology Kt/V: Kt/V: medicine (hemodialysis and peritoneal dialysis treatment; dimensionless time) Waist–hip ratio
The distribution coefficient, log D, is the ratio of the sum of the concentrations of all forms of the compound (ionized plus un-ionized) in each of the two phases, one essentially always aqueous; as such, it depends on the pH of the aqueous phase, and log D = log P for non-ionizable compounds at any pH.
where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
where log denotes a logarithm to base 10 or common logarithm, and K diss is a stepwise acid dissociation constant. For bases, the base association constant , p K b is used. For any given acid or base the two constants are related by p K a + p K b = p K w , so p K a can always be used in calculations.
In particular, the pH of a solution can be predicted when the analytical concentration and pK a values of all acids and bases are known; conversely, it is possible to calculate the equilibrium concentration of the acids and bases in solution when the pH is known. These calculations find application in many different areas of chemistry, biology ...