Search results
Results from the WOW.Com Content Network
The apsides refer to the farthest (2) and nearest (3) points reached by an orbiting planetary body (2 and 3) with respect to a primary, or host, body (1). An apsis (from Ancient Greek ἁψίς (hapsís) 'arch, vault'; pl. apsides / ˈ æ p s ɪ ˌ d iː z / AP-sih-deez) [1] [2] is the farthest or nearest point in the orbit of a planetary body about its primary body.
The six Earth images are positions along the orbital ellipse, which are sequentially the perihelion (periapsis—nearest point to the Sun) on anywhere from January 2 to January 5, the point of March equinox on March 19, 20, or 21, the point of June solstice on June 20, 21, or 22, the aphelion (apoapsis—the farthest point from the Sun) on ...
As the two dates chosen here are equinoxes, this will be correct when perihelion, the date the Earth is closest to the Sun, falls on a solstice. The current perihelion, near January 4, is fairly close to the solstice of December 21 or 22.
The ancient Greek astronomer Hipparchus noted the apsidal precession of the Moon's orbit (as the revolution of the Moon's apogee with a period of approximately 8.85 years); [4] it is corrected for in the Antikythera Mechanism (circa 80 BCE) (with the supposed value of 8.88 years per full cycle, correct to within 0.34% of current measurements). [5]
That moment, called aphelion, will occur when the distance between the two celestial bodies stretches to more than 94.5 million miles. At perihelion, Earth is roughly 91.4 million miles away from ...
For Earth, orbital eccentricity e ≈ 0.016 71, apoapsis is aphelion and periapsis is perihelion, relative to the Sun. For Earth's annual orbit path, the ratio of longest radius (r a) / shortest radius (r p) is = +
Kepler's second law states that a body in orbit traces equal areas over equal times; its orbital velocity is highest around perihelion and lowest around aphelion. [14] The Earth spends less time near perihelion and more time near aphelion. This means that the lengths of the seasons vary. [15] Perihelion currently occurs around 3 January, so the ...
Earth's rotational velocity also varies in a phenomenon known as length-of-day variation. [171] Earth's annual orbit is elliptical rather than circular, and its closest approach to the Sun is called perihelion. In modern times, Earth's perihelion occurs around 3 January, and its aphelion around 4 July.