Search results
Results from the WOW.Com Content Network
Original file (816 × 1,308 pixels, file size: 19.86 MB, MIME type: application/pdf, 428 pages) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
The power factor in a single-phase circuit (or balanced three-phase circuit) can be measured with the wattmeter-ammeter-voltmeter method, where the power in watts is divided by the product of measured voltage and current. The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced ...
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
The corners between the sections of the curve define the limits of the power factor (PF) that the generator can sustain at its nameplate capacity (the illustration has the PF ticks placed at 0.85 lagging and 0.95 leading angles). In practice, the prime mover (a power source that drives the generator) is designed for less active power than the ...
In an alternating current (AC) electric power system, synchronization is the process of matching the frequency, phase and voltage of a generator or other source to an electrical grid in order to transfer power. If two unconnected segments of a grid are to be connected to each other, they cannot safely exchange AC power until they are synchronized.
MIL-STD-704 Aircraft Electrical Power Characteristics is a United States Military Standard that defines a standardized power interface between a military aircraft and its equipment and carriage stores, covering such topics as voltage, frequency, phase, power factor, ripple, maximum current, electrical noise and abnormal conditions (overvoltage and undervoltage), for both AC and DC systems.
Power factor is the ratio of resistive (or real) power to volt-amperes. A capacitive load has a leading power factor, and an inductive load has a lagging power factor. A purely resistive load (such as a filament lamp, heater or kettle) exhibits a power factor of 1. Current harmonics are a measure of distortion of the wave form.
This ability to selectively control power factor can be exploited for power factor correction of the power system to which the motor is connected. Since most power systems of any significant size have a net lagging power factor, the presence of overexcited synchronous motors moves the system's net power factor closer to unity, improving efficiency.