Search results
Results from the WOW.Com Content Network
Peptide bond formation via dehydration reaction. When two amino acids form a dipeptide through a peptide bond, [1] it is a type of condensation reaction. [2] In this kind of condensation, two amino acids approach each other, with the non-side chain (C1) carboxylic acid moiety of one coming near the non-side chain (N2) amino moiety of the other.
Amino acids are prevalent in nature, and all of them function as ligands toward the transition metals. [1] Not included in this article are complexes of the amides (including peptide) and ester derivatives of amino acids. Also excluded are the polyamino acids including the chelating agents EDTA and NTA.
One part of the domain contains a region that mediates sequence specific DNA binding properties and the leucine zipper that is required to hold together (dimerize) two DNA binding regions. The DNA binding region comprises a number of basic amino acids such as arginine and lysine. Proteins containing this domain are transcription factors. [1] [2]
The two amino acid residues are linked through a peptide bond. As both the amine and carboxylic acid groups of amino acids can react to form amide bonds, one amino acid molecule can react with another and become joined through an amide linkage. This polymerization of amino acids is what creates proteins.
The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site. Although the active site occupies only ~10–20% of the volume of an enzyme, [ 1 ] : 19 it is the most important part as it directly catalyzes the chemical ...
The first and third scales are derived from the physiochemical properties of the amino acid side chains. These scales result mainly from inspection of the amino acid structures. [14] [1] Biswas et al., divided the scales based on the method used to obtain the scale into five different categories. [3]
The existing specialized amino acid sequence compressors are low compared with that of DNA sequence compressors, mainly because of the characteristics of the data. For example, modeling inversions is harder because of the reverse information loss (from amino acids to DNA sequence).
Among the tightest known protein–protein complexes is that between the enzyme angiogenin and ribonuclease inhibitor; the dissociation constant for the human proteins is 5x10 −16 mol/L. [3] [4] Another biological example is the binding protein streptavidin, which has extraordinarily high affinity for biotin (vitamin B7/H, dissociation ...