Search results
Results from the WOW.Com Content Network
Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.
For univariate distributions that are symmetric about one median, the Hodges–Lehmann estimator is a robust and highly efficient estimator of the population median; for non-symmetric distributions, the Hodges–Lehmann estimator is a robust and highly efficient estimator of the population pseudo-median, which is the median of a symmetrized ...
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
In robust statistics, repeated median regression, also known as the repeated median estimator, is a robust linear regression algorithm. The estimator has a breakdown point of 50%. [ 1 ] Although it is equivariant under scaling, or under linear transformations of either its explanatory variable or its response variable, it is not under affine ...
The formula may be understood intuitively as the sample maximum plus the average gap between observations in the sample, the sample maximum being chosen as the initial estimator, due to being the maximum likelihood estimator, [f] with the gap being added to compensate for the negative bias of the sample maximum as an estimator for the ...
The method of conditional probabilities replaces the random root-to-leaf walk in the random experiment by a deterministic root-to-leaf walk, where each step is chosen to inductively maintain the following invariant: the conditional probability of failure, given the current state, is less than 1.
In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.
Such an estimator is not necessarily an M-estimator of ρ-type, but if ρ has a continuous first derivative with respect to , then a necessary condition for an M-estimator of ψ-type to be an M-estimator of ρ-type is (,) = (,). The previous definitions can easily be extended to finite samples.