enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    A page from "On the Sphere and Cylinder" in Latin. On the Sphere and Cylinder (Greek: Περὶ σφαίρας καὶ κυλίνδρου) is a treatise that was published by Archimedes in two volumes c. 225 BCE. [1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values ...

  3. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    The sphere has a volume two-thirds that of the circumscribed cylinder and a surface area two-thirds that of the cylinder (including the bases). Since the values for the cylinder were already known, he obtained, for the first time, the corresponding values for the sphere. The volume of a sphere of radius r is ⁠ 4 / 3 ⁠ π r 3 = ⁠ 2 / 3 ...

  4. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),

  5. Archimedes - Wikipedia

    en.wikipedia.org/wiki/Archimedes

    The volume is ⁠ 4 / 3 ⁠ π r 3 for the sphere, and 2 π r 3 for the cylinder. The surface area is 4 π r 2 for the sphere, and 6 π r 2 for the cylinder (including its two bases), where r is the radius of the sphere and cylinder.

  6. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth ...

  7. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    The base of the cone is a circle of radius 2, with area , while the height is 2, so the area is /. Subtracting the volume of the cone from the volume of the cylinder gives the volume of the sphere: = =. The dependence of the volume of the sphere on the radius is obvious from scaling, although that also was not trivial to make rigorous back then.

  8. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    Performance is maximized when the constellation of code points are at the centres of an efficient circle packing. In practice, suboptimal rectangular packings are often used to simplify decoding. Circle packing has become an essential tool in origami design, as each appendage on an origami figure requires a circle of paper. [12]

  9. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    The area of the base of a cylinder is the area of a circle (in this case we define that the circle has a radius with measure ): B = π r 2 {\displaystyle B=\pi r^{2}} . To calculate the total area of a right circular cylinder, you simply add the lateral area to the area of the two bases: