Search results
Results from the WOW.Com Content Network
Numerical simulations suggest that deep convection on Jupiter is primarily triggered by water condensation occurring at pressure levels ranging from approximately 5 bar to 500 mbar. At the upper altitudes of these convective plumes, where the pressure is a few hundred millibars, condensates such as NH3, H2S, and water are likely to form.
[168] [169] Missions to Jupiter are accomplished at a cost in energy, which is described by the net change in velocity of the spacecraft, or delta-v. Entering a Hohmann transfer orbit from Earth to Jupiter from low Earth orbit requires a delta-v of 6.3 km/s, [170] which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit. [171]
According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than ...
In astrophysics, gravitational compression is a phenomenon in which gravity, acting on the mass of an object, compresses it, reducing its size and increasing the object's density. In the core of a star such as the Sun , gravitational pressure is balanced by the outward thermal pressure from fusion reactions , temporarily halting gravitational ...
For gas giant planets such as Jupiter, Saturn, Uranus, and Neptune, the surface gravity is given at the 1 bar pressure level in the atmosphere. [12] It has been found that for giant planets with masses in the range up to 100 times Earth's mass, their gravity surface is nevertheless very similar and close to 1 g, a region named the gravity ...
Einstein's theory linked space, time and gravity. It holds that concentrations of mass and energy curve the structure of space-time, influencing the motion of whatever passes nearby.
An image of Jupiter captured by the Cassini spacecraft on Dec. 7, 2000, as the space probe made its way through the solar system toward Saturn. (NASA/JPL/University of Arizona)
During the 1970s to 1980s, the increasing number of artificial satellites in Earth orbit further facilitated high-precision measurements, and the relative uncertainty was decreased by another three orders of magnitude, to about 2 × 10 −9 (1 in 500 million) as of 1992. Measurement involves observations of the distances from the satellite to ...