Search results
Results from the WOW.Com Content Network
Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy.
Convergent evolution—the repeated evolution of similar traits in multiple lineages which all ancestrally lack the trait—is rife in nature, as illustrated by the examples below. The ultimate cause of convergence is usually a similar evolutionary biome , as similar environments will select for similar traits in any species occupying the same ...
Carcinisation (American English: carcinization) is a form of convergent evolution in which non-crab crustaceans evolve a crab-like body plan. The term was introduced into evolutionary biology by L. A. Borradaile, who described it as "the many attempts of Nature to evolve a crab". [2]
Also called functionalism. The Darwinian view that many or most physiological and behavioral traits of organisms are adaptations that have evolved for specific functions or for specific reasons (as opposed to being byproducts of the evolution of other traits, consequences of biological constraints, or the result of random variation). adaptive radiation The simultaneous or near-simultaneous ...
However, the criteria for defining convergent as opposed to parallel evolution are unclear in practice, so that arbitrary diagnosis is common. When two species share a trait, evolution is defined as parallel if the ancestors are known to have shared that similarity; if not, it is defined as convergent.
This convergent evolution leads to species independently sharing a trait that is different from the trait inferred to have been present in their common ancestor. [ 21 ] [ 22 ] [ 23 ] Parallel homoplasy – derived trait present in two groups or species without a common ancestor due to convergent evolution .
Evolution is the change in the heritable characteristics of biological populations over successive generations. [1] [2] It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. [3]
The term is often applied to groups that share similar features known as homoplasies, which are explained as a result of convergent evolution. The arrangement of the members of a polyphyletic group is called a polyphyly / ˈ p ɒ l ɪ ˌ f aɪ l i /. [2] It is contrasted with monophyly and paraphyly.