Search results
Results from the WOW.Com Content Network
Temperature profile of the Uranian troposphere and lower stratosphere. Cloud and haze layers are also indicated. The Uranian atmosphere can be divided into three main layers: the troposphere, between altitudes of −300 [a] and 50 km and pressures from 100 to 0.1 bar; the stratosphere, spanning altitudes between 50 and 4000 km and pressures between 0.1 and 10 −10 bar; and the thermosphere ...
The middle layer of the Uranian atmosphere is the stratosphere, where temperature generally increases with altitude from 53 K (−220 °C; −364 °F) in the tropopause to between 800 and 850 K (527 and 577 °C; 980 and 1,070 °F) at the base of the thermosphere. [99]
The lowest temperature recorded in Uranus's tropopause is 49 K (−224 °C), making Uranus the coldest planet in the Solar System, colder than Neptune. [ 22 ] [ 23 ] Another hypothesis states that when Uranus was "knocked over" by the supermassive impactor which caused its extreme axial tilt, the event also caused it to expel most of its ...
Storms can also be seen near and beneath the polar cap in Uranus’ atmosphere. Astronomers will eagerly watch how the polar cap and the planet’s weather and atmosphere change as Uranus ...
It is the coldest planetary atmosphere in the Solar System, with a minimum temperature of 49 K (−224.2 °C), and has a complex, layered cloud structure with water thought to make up the lowest clouds and methane the uppermost layer of clouds. The interior of Uranus is mainly composed of ice and rock.
The temperature of the air near the surface of the Earth is measured at meteorological observatories and weather stations, usually using thermometers placed in a shelter such as a Stevenson screen—a standardized, well-ventilated, white-painted instrument shelter. The thermometers should be positioned 1.25–2 m above the ground.
Uranus, blue-green in color due to the methane contained in an atmosphere comprised mostly of hydrogen and helium, has a diameter of about 31,500 miles (50,700 km). It is big enough to fit 63 ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...