Search results
Results from the WOW.Com Content Network
This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.
The principle of operation behind RASS is as follows: Bragg scattering occurs when acoustic energy (i.e., sound) is transmitted into the vertical beam of a radar such that the wavelength of the acoustic signal matches the half-wavelength of the radar. As the frequency of the acoustic signal is varied, strongly enhanced scattering of the radar ...
When the incident light beam is at Bragg angle, a diffraction pattern emerges where an order of diffracted beam occurs at each angle θ that satisfies: [3] = Here, m = ..., −2, −1, 0, +1, +2, ... is the order of diffraction, λ is the wavelength of light in vacuum, and Λ is the wavelength of the sound. [4]
Scattering also includes the interaction of billiard balls on a table, the Rutherford scattering (or angle change) of alpha particles by gold nuclei, the Bragg scattering (or diffraction) of electrons and X-rays by a cluster of atoms, and the inelastic scattering of a fission fragment as it traverses a thin foil.
In other cases, the scattering intensity is enhanced in backward direction. This can have different reasons: In alpenglow, red light prevails because the blue part of the spectrum is depleted by Rayleigh scattering. In gegenschein, constructive interference might play a role. [verification needed]
A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror .
where G, R g, and B are constants related to the scattering contrast, structural volume, surface area, and radius of gyration. q is the magnitude of the scattering vector which is related to the Bragg spacing, d, q = 2π/d = 4π/λ sin(θ/2). λ is the wavelength and θ is the scattering angle (2θ in diffraction).
The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector.