enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    Near the surface of the Earth, an object in free fall in a vacuum will accelerate at approximately 9.8 m/s 2, independent of its mass. With air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (190 km/h or 118 mph [4]) for a human skydiver.

  3. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Based on air resistance, for example, the terminal speed of a skydiver in a belly-to-earth (i.e., face down) free fall position is about 55 m/s (180 ft/s). [3] This speed is the asymptotic limiting value of the speed, and the forces acting on the body balance each other more and more closely as the terminal speed is approached. In this example ...

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which ...

  5. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [ 22 ] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized D p r {\displaystyle D ...

  6. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    In air, the same theory can be used to explain why small water droplets (or ice crystals) can remain suspended in air (as clouds) until they grow to a critical size and start falling as rain (or snow and hail). [6] Similar use of the equation can be made in the settling of fine particles in water or other fluids. [citation needed]

  7. Coefficient of restitution - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_restitution

    The COR is a property of a pair of objects in a collision, not a single object. If a given object collides with two different objects, each collision has its own COR. When a single object is described as having a given coefficient of restitution, as if it were an intrinsic property without reference to a second object, some assumptions have been made – for example that the collision is with ...

  8. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    Here the pressure P D is referred to as dynamic pressure due to the kinetic energy of the fluid experiencing relative flow velocity u. This is defined in similar form as the kinetic energy equation: P D = 1 2 ρ u 2 {\displaystyle P_{\rm {D}}={\frac {1}{2}}\rho u^{2}}

  9. Newton's sine-square law of air resistance - Wikipedia

    en.wikipedia.org/wiki/Newton's_sine-square_law_of...

    Isaac Newton's sine-squared law of air resistance is a formula that implies the force on a flat plate immersed in a moving fluid is proportional to the square of the sine of the angle of attack. Although Newton did not analyze the force on a flat plate himself, the techniques he used for spheres, cylinders, and conical bodies were later applied ...