Search results
Results from the WOW.Com Content Network
2.1 Mathematics. 2.2 Physics. 2.3 ... 2.4 Telecommunications engineering. 3 Lists of equations. 4 See also. Toggle the table of contents. List of equations ...
Fuchs's theorem (differential equations) Fuglede's theorem (functional analysis) Full employment theorem (theoretical computer science) Fulton–Hansen connectedness theorem (algebraic geometry) Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics)
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
An example of linear Diophantine equation is ax + by = c where a, b, and c are constants. An exponential Diophantine equation is one for which exponents of the terms of the equation can be unknowns. Diophantine problems have fewer equations than unknown variables and involve finding integers that work correctly for all equations.
Computing can be restated in terms of an infinite table. We place the numbers 2 b {\displaystyle 2^{b}} in the top row, and fill the left column with values 2. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.
A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. [ 21 ] [ 22 ] [ 23 ] Differential equations play a prominent role in engineering , physics , economics , biology , and other disciplines.
By solving for the roots, r, in this characteristic equation, one can find the general solution to the differential equation. [1] [6] For example, if r has roots equal to 3, 11, and 40, then the general solution will be () = + +, where , , and are arbitrary constants which need to be determined by the boundary and/or initial conditions.