Search results
Results from the WOW.Com Content Network
Solution to Fibonacci rabbit problem: In a growing idealized population, the number of rabbit pairs form the Fibonacci sequence. At the end of the n th month, the number of pairs is equal to F n. Relation to the golden ratio
In mathematics, the Wythoff array is an infinite matrix of integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff.Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.
Another example in this chapter involves the growth of a population of rabbits, where the solution requires generating a numerical sequence. [8] Although the resulting Fibonacci sequence dates back long before Leonardo, [ 9 ] its inclusion in his book is why the sequence is named after him today.
A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
Download as PDF; Printable version; In other projects ... Positive integer solutions of x 2 + y 2 + z 2 = 3 ... At each stage an alternating sequence of 1s and 0s is ...
In this section we shall use the Fibonacci Box in place of the primitive triple it represents. An infinite ternary tree containing all primitive Pythagorean triples/Fibonacci Boxes can be constructed by the following procedure. [10] Consider a Fibonacci Box containing two, odd, coprime integers x and y in the right-hand column.
The reciprocal Fibonacci constant ψ is the sum of the reciprocals of the Fibonacci numbers: = = = + + + + + + + +. Because the ratio of successive terms tends to the reciprocal of the golden ratio, which is less than 1, the ratio test shows that the sum converges.