Search results
Results from the WOW.Com Content Network
Here, the water is chilled by Arctic temperatures. It also gets saltier because when sea ice forms, the salt does not freeze and is left behind in the surrounding water. The cold water is now more dense, due to the added salts, and sinks toward the ocean bottom. Surface water moves in to replace the sinking water, thus creating a current.
the effective cloud amount, the cloud amount weighted by the cloud IR emissivity, with a global average of 0.5; the cloud (visible) optical depth varies within a range of 4 and 10. the cloud water path for the liquid and solid (ice) phases of the cloud particles; the cloud effective particle size for both liquid and ice, ranging from 0 to 200 μm
High tropospheric and non-tropospheric clouds appear mostly white if composed entirely of ice crystals and/or supercooled water droplets. As a tropospheric cloud matures, the dense water droplets may combine to produce larger droplets, which may combine to form droplets large enough to fall as rain.
In the water cycle, the universal solvent water evaporates from land and oceans to form clouds in the atmosphere, and then precipitates back to different parts of the planet. Precipitation can seep into the ground and become part of groundwater systems used by plants and other organisms, or can runoff the surface to form lakes and rivers.
The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes), all retained by Earth's gravity.
Sea of fog riding the coastal marine layer through the Golden Gate Bridge at San Francisco, California Afternoon smog within a coastal marine layer in West Los Angeles. A marine layer is an air mass that develops over the surface of a large body of water, such as an ocean or large lake, in the presence of a temperature inversion.
Because of their differential buoyancy relative to surrounding cloud-free air, clouds can be associated with vertical motions of the air that may be convective, frontal, or cyclonic. The motion is upward if the clouds are less dense because condensation of water vapor releases heat, warming the air and thereby decreasing its density.
Convection cells can form in any fluid, including the Earth's atmosphere (where they are called Hadley cells), boiling water, soup (where the cells can be identified by the particles they transport, such as grains of rice), the ocean, or the surface of the Sun. The size of convection cells is largely determined by the fluid's properties.