Search results
Results from the WOW.Com Content Network
The general formula for the escape velocity of an object at a distance r from the center of a planet ... The three-dimensional velocity vector is defined as =< ...
Trajectory of a particle with initial position vector r 0 and velocity v 0, subject to constant acceleration a, all three quantities in any direction, and the position r(t) and velocity v(t) after time t. The initial position, initial velocity, and acceleration vectors need not be collinear, and the equations of motion take an almost identical ...
Rate of change of velocity per unit time: the second time derivative of position m/s 2: L T −2: vector Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: pseudovector Angular momentum: L: Measure of the extent and direction an object rotates about a reference point kg⋅m 2 /s L 2 M T −1: conserved ...
Linear motion, also called rectilinear motion, [1] is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion , with constant velocity (zero acceleration ); and non-uniform linear motion , with variable velocity ...
Important formulas in kinematics define the velocity and acceleration of points in a moving body as they trace trajectories in three-dimensional space. This is particularly important for the center of mass of a body, which is used to derive equations of motion using either Newton's second law or Lagrange's equations .
The velocity v of a point or particle is a vector, its length gives the speed. For constant velocity the position at time t will be = +, where x 0 is the position at time t = 0. Velocity is the time derivative of position. Its dimensions are length/time.
A simple application of dimensional analysis to mathematics is in computing the form of the volume of an n-ball (the solid ball in n dimensions), or the area of its surface, the n-sphere: being an n-dimensional figure, the volume scales as x n, while the surface area, being (n − 1)-dimensional, scales as x n−1.
The velocity, in contrast, is the rate of change of the position in (three-dimensional) space of the object, as seen by an observer, with respect to the observer's time. The value of the magnitude of an object's four-velocity, i.e. the quantity obtained by applying the metric tensor g to the four-velocity U , that is ‖ U ‖ 2 = U ⋅ U = g ...