Search results
Results from the WOW.Com Content Network
Formation thickness (h) of rock with enough permeability to deliver fluids to a well bore, this property is often called “net reservoir rock.” In the oil and gas industry, another quantity “net pay” is computed which is the thickness of rock that can deliver hydrocarbons to the well bore at a profitable rate. [11]
A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations. Such reservoirs form when kerogen (ancient plant matter) is created in surrounding rock by the presence of high heat and pressure in the Earth's crust .
In petroleum science, reservoir fluids are the fluids mixture contained within the petroleum reservoir which technically are placed in the reservoir rock. Reservoir fluids normally include liquid hydrocarbon (mainly Crude oil), aqueous solutions with dissolved salt, hydrocarbon and non-hydrocarbon gases such as methane and hydrogen sulfide [1] respectively.
In fluid mechanics, materials science and Earth sciences, the permeability of porous media (often, a rock or soil) is is a measure of the ability for fluids (gas or liquid) to flow through the media; it is commonly symbolized as k. Fluids can more easily flow through a material with high permeability than one with low permeability. [1]
Traditionally, the properties of rocks and minerals beneath the earth's surface were defined through seismic exploration and seismology from earthquakes. Travel time, variations in phase and amplitude of seismic waves produced during seismic exploration show rock and fluid properties at the subsurface level.
The bulk rock volume multiplied by the net-to-gross ratio gives the net rock volume of the reservoir. The net rock volume multiplied by porosity gives the total hydrocarbon pore volume, i.e. the volume within the sedimentary package that fluids (importantly, hydrocarbons and water) can occupy.
Once well logs are properly conditioned and edited, a petrophysical rock model is generated that can be used to derive the effective elastic rock properties from fluid and mineral parameters as well as rock structure information. The model parameters are calibrated by comparison of the synthetic to the available elastic sonic logs.
Additionally, capillary pressure in porous rocks has been shown to affect phase behavior of the reservoir fluids, thus influencing extraction methods and recovery. [8] It is crucial to understand these geological properties of the reservoir for its development, production, and management (e.g. how easy it is to extract the hydrocarbons).