enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.

  3. Revised simplex method - Wikipedia

    en.wikipedia.org/wiki/Revised_simplex_method

    For the rest of the discussion, it is assumed that a linear programming problem has been converted into the following standard form: =, where A ∈ ℝ m×n.Without loss of generality, it is assumed that the constraint matrix A has full row rank and that the problem is feasible, i.e., there is at least one x ≥ 0 such that Ax = b.

  4. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    Linear–fractional programming (LFP) is a generalization of linear programming (LP). In LP the objective function is a linear function, while the objective function of a linear–fractional program is a ratio of two linear functions. In other words, a linear program is a fractional–linear program in which the denominator is the constant ...

  5. Dantzig–Wolfe decomposition - Wikipedia

    en.wikipedia.org/wiki/Dantzig–Wolfe_decomposition

    Dantzig–Wolfe decomposition relies on delayed column generation for improving the tractability of large-scale linear programs. For most linear programs solved via the revised simplex algorithm, at each step, most columns (variables) are not in the basis. In such a scheme, a master problem containing at least the currently active columns (the ...

  6. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    Similarly, an integer program (consisting of a collection of linear constraints and a linear objective function, as in a linear program, but with the additional restriction that the variables must take on only integer values) satisfies both the monotonicity and locality properties of an LP-type problem, with the same general position ...

  7. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    However, to apply it, the origin (all variables equal to 0) must be a feasible point. This condition is satisfied only when all the constraints (except non-negativity) are less-than constraints and with positive constant on the right-hand side. The Big M method introduces surplus and artificial variables to convert all inequalities into that form.

  8. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    The true distribution is then approximated by a linear regression, and the best estimators are obtained in closed form as ^ = ((~) ~) (~) (¯), where denotes the template matrix with the values of the known or previously determined model for any of the reference values β, are the random variables (e.g. a measurement), and the matrix ~ and the ...

  9. Weak formulation - Wikipedia

    en.wikipedia.org/wiki/Weak_formulation

    This is a formulation of the Lax–Milgram theorem which relies on properties of the symmetric part of the bilinear form. It is not the most general form. It is not the most general form. Let V {\displaystyle V} be a real Hilbert space and a ( ⋅ , ⋅ ) {\displaystyle a(\cdot ,\cdot )} a bilinear form on V {\displaystyle V} , which is