enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The logarithm of a product is the sum of the logarithms of the numbers being multiplied; the logarithm of the ratio of two numbers is the difference of the logarithms. The logarithm of the p-th power of a number is p times the logarithm of the number itself; the logarithm of a p-th root is the logarithm of the number divided by p. The following ...

  3. Mirifici Logarithmorum Canonis Descriptio - Wikipedia

    en.wikipedia.org/wiki/Mirifici_Logarithmorum...

    The logarithm in the table, however, is of that sine value divided by 10,000,000. [1]: p. 19 The logarithm is again presented as an integer with an implied denominator of 10,000,000. The table consists of 45 pairs of facing pages. Each pair is labeled at the top with an angle, from 0 to 44 degrees, and at the bottom from 90 to 45 degrees.

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  5. Dilogarithm - Wikipedia

    en.wikipedia.org/wiki/Dilogarithm

    The dilogarithm along the real axis. In mathematics, the dilogarithm (or Spence's function), denoted as Li 2 (z), is a particular case of the polylogarithm.Two related special functions are referred to as Spence's function, the dilogarithm itself:

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The logarithm of a complex number is thus a multi-valued function, because φ is multi-valued. Finally, the other exponential law ( e a ) k = e a k , {\displaystyle \left(e^{a}\right)^{k}=e^{ak},} which can be seen to hold for all integers k , together with Euler's formula, implies several trigonometric identities , as well as de Moivre's formula .

  7. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    If a density is log-concave, it has a monotone hazard rate (MHR), and is a regular distribution since the derivative of the logarithm of the survival function is the negative hazard rate, and by concavity is monotone i.e.

  8. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In arithmetic modulo an integer m , the more commonly used term is index : One can write k = ind b a (mod m ) (read "the index of a to the base b modulo m ") for b k ≡ a (mod m ) if b is a primitive ...

  9. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log: