Search results
Results from the WOW.Com Content Network
The ΛCDM model assumes that the shape of the universe is of zero curvature (is flat) and has an undetermined topology. In 2019, interpretation of Planck data suggested that the curvature of the universe might be positive (often called "closed"), which would contradict the ΛCDM model.
The curvature of the universe places constraints on the topology. If the spatial geometry is spherical, i.e., possess positive curvature, the topology is compact. For a flat (zero curvature) or a hyperbolic (negative curvature) spatial geometry, the topology can be either compact or infinite. [8]
The Milne universe is a special case of a more general Friedmann–Lemaître–Robertson–Walker model (FLRW). The Milne solution can be obtained from the more generic FLRW model by demanding that the energy density, pressure and cosmological constant all equal zero and the spatial curvature is negative.
Possible shapes of the universe. In terms of the curvature of space-time and the shape of the universe, it can theoretically be closed (positive curvature, or space-time folding in itself as though on a four-dimensional sphere's surface), open (negative curvature, with space-time folding outward), or flat (zero curvature, like the surface of a ...
The Friedmann–Lemaître–Robertson–Walker metric is a curved metric which forms the current foundation for the description of the expansion of the universe and the shape of the universe. [citation needed] The fact that photons have no mass yet are distorted by gravity, means that the explanation would have to be something besides photonic ...
In the case of the flatness problem, the parameter which appears fine-tuned is the density of matter and energy in the universe. This value affects the curvature of space-time, with a very specific critical value being required for a flat universe. The current density of the universe is observed to be very close to this critical value.
Thus the Gaussian curvature is an intrinsic invariant of a surface. Gauss presented the theorem in this manner (translated from Latin): Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.
In other words, the energy (relative to the origin) of a co-moving particle in free-fall is conserved. General relativity merely adds a connection between the spatial curvature of the universe and the energy of such a particle: positive total energy implies negative curvature and negative total energy implies positive curvature.