Search results
Results from the WOW.Com Content Network
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Clifford's circle theorems; Constant chord theorem; D.
The second theorem considers five circles in general position passing through a single point M. Each subset of four circles defines a new point P according to the first theorem. Then these five points all lie on a single circle C. The third theorem considers six circles in general position that pass through a single point M. Each subset of five ...
Download as PDF; Printable version; ... Pages in category "Theorems about triangles and circles" The following 18 pages are in this category, out of 18 total ...
This is a list of notable theorems. Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures; List of data structures; List of derivatives and integrals in alternative calculi; List of equations; List of fundamental theorems; List of hypotheses; List of inequalities; Lists of ...
In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow. [ 1 ] [ 2 ] It was named after the English mathematician L. M. Milne-Thomson .
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
Descartes' theorem generalizes to mutually tangent great or small circles in spherical geometry if the curvature of the th circle is defined as = , the geodesic curvature of the circle relative to the sphere, which equals the cotangent of the oriented intrinsic radius.