Search results
Results from the WOW.Com Content Network
3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).
This contracts the 4 sides of the complete quadrilateral to the 4 nodes of the Cayley surface, while blowing up its 6 vertices to the lines through two of them. The surface is a section through the Segre cubic. [1] The surface contains nine lines, 11 tritangents and no double-sixes. [1] A number of affine forms of the surface have been presented.
Numerical 3-dimensional matching is an NP-complete decision problem. It is given by three multisets of integers, and , each containing elements, and a bound .The goal is to select a subset of such that every integer in , and occurs exactly once and that for every triple (,,) in the subset + + = holds.
In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry . The theory is simplified by working in projective space rather than affine space , and so cubic surfaces are generally considered in projective 3-space P 3 ...
In differential geometry, Cayley's ruled cubic surface is the ruled cubic surface = / . In projective coordinates it is = / . It contains a (double) line of self-intersection = = and two pinch points. [1]
Since every Riemann surface has a universal cover which is a simply connected Riemann surface, the uniformization theorem leads to a classification of Riemann surfaces into three types: those that have the Riemann sphere as universal cover ("elliptic"), those with the plane as universal cover ("parabolic") and those with the unit disk as ...
This familiar equation for a plane is called the general form of the equation of the plane or just the plane equation. [6] Thus for example a regression equation of the form y = d + ax + cz (with b = −1) establishes a best-fit plane in three-dimensional space when there are two explanatory variables.
Head and cerebral structures (hidden) extracted from 150 MRI slices using marching cubes (about 150,000 triangles). Marching cubes is a computer graphics algorithm, published in the 1987 SIGGRAPH proceedings by Lorensen and Cline, [1] for extracting a polygonal mesh of an isosurface from a three-dimensional discrete scalar field (the elements of which are sometimes called voxels).