enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  3. Normal mode - Wikipedia

    en.wikipedia.org/wiki/Normal_mode

    A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation ...

  4. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.

  5. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  7. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    A real random vector = (, …,) is called a centered normal random vector if there exists a matrix such that has the same distribution as where is a standard normal random vector with components. [ 1 ] : p. 454

  8. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    For a sample of n values, a method of moments estimator of the population excess kurtosis can be defined as = = = (¯) [= (¯)] where m 4 is the fourth sample moment about the mean, m 2 is the second sample moment about the mean (that is, the sample variance), x i is the i-th value, and ¯ is the sample mean.

  9. Unimodality - Wikipedia

    en.wikipedia.org/wiki/Unimodality

    A common definition is as follows: a function f(x) is a unimodal function if for some value m, it is monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case, the maximum value of f(x) is f(m) and there are no other local maxima. Proving unimodality is often hard.