enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random walk - Wikipedia

    en.wikipedia.org/wiki/Random_walk

    Five eight-step random walks from a central point. Some paths appear shorter than eight steps where the route has doubled back on itself. (animated version)In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some mathematical space.

  3. Talk:Random walk - Wikipedia

    en.wikipedia.org/wiki/Talk:Random_walk

    For a mere (uncorrelated) random walk, if the steps are constant and equal to 1 unit then for the distance from the starting point (net displacement): - the rms is equal to sqrt(n) in both 1 and 2 dimensions (the expected net squared displacement is equal to n) - the average distance asymptotes to sqrt(2n/pi) in 1 dimension but to sqrt(pi*n/4 ...

  4. Loop-erased random walk - Wikipedia

    en.wikipedia.org/wiki/Loop-erased_random_walk

    A loop-erased random walk in 2D for steps. In mathematics, loop-erased random walk is a model for a random simple path with important applications in combinatorics, physics and quantum field theory. It is intimately connected to the uniform spanning tree, a model for a random tree.

  5. Maximal entropy random walk - Wikipedia

    en.wikipedia.org/wiki/Maximal_Entropy_Random_Walk

    Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy.

  6. Self-avoiding walk - Wikipedia

    en.wikipedia.org/wiki/Self-avoiding_walk

    The pivot algorithm works by taking a self-avoiding walk and randomly choosing a point on this walk, and then applying symmetrical transformations (rotations and reflections) on the walk after the n th step to create a new walk. Calculating the number of self-avoiding walks in any given lattice is a common computational problem. There is ...

  7. Heterogeneous random walk in one dimension - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_random_walk...

    The actual random walk obeys a stochastic equation of motion, but its probability density function (PDF) obeys a deterministic equation. PDFs of random walks can be formulated in terms of the (discrete in space) master equation [1] [12] [13] and the generalized master equation [3] or the (continuous in space and time) Fokker Planck equation [37] and its generalizations. [10]

  8. Persistent random walk - Wikipedia

    en.wikipedia.org/wiki/Persistent_random_walk

    The persistent random walk is a modification of the random walk model. A population of particles are distributed on a line, with constant speed c 0 {\displaystyle c_{0}} , and each particle's velocity may be reversed at any moment.

  9. The Drunkard's Walk - Wikipedia

    en.wikipedia.org/wiki/The_Drunkard's_Walk

    The Drunkard's Walk discusses the role of randomness in everyday events, and the cognitive biases that lead people to misinterpret random events and stochastic processes. The title refers to a certain type of random walk, a mathematical process in which one or more variables change value under a series of random steps.