enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random walk - Wikipedia

    en.wikipedia.org/wiki/Random_walk

    A Wiener process is the scaling limit of random walk in dimension 1. This means that if there is a random walk with very small steps, there is an approximation to a Wiener process (and, less accurately, to Brownian motion). To be more precise, if the step size is ε, one needs to take a walk of length L/ε 2 to approximate a Wiener length of L ...

  3. Talk:Random walk - Wikipedia

    en.wikipedia.org/wiki/Talk:Random_walk

    For a mere (uncorrelated) random walk, if the steps are constant and equal to 1 unit then for the distance from the starting point (net displacement): - the rms is equal to sqrt(n) in both 1 and 2 dimensions (the expected net squared displacement is equal to n) - the average distance asymptotes to sqrt(2n/pi) in 1 dimension but to sqrt(pi*n/4 ...

  4. Maximal entropy random walk - Wikipedia

    en.wikipedia.org/wiki/Maximal_Entropy_Random_Walk

    Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy.

  5. Heterogeneous random walk in one dimension - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_random_walk...

    The actual random walk obeys a stochastic equation of motion, but its probability density function (PDF) obeys a deterministic equation. PDFs of random walks can be formulated in terms of the (discrete in space) master equation [1] [12] [13] and the generalized master equation [3] or the (continuous in space and time) Fokker Planck equation [37] and its generalizations. [10]

  6. Loop-erased random walk - Wikipedia

    en.wikipedia.org/wiki/Loop-erased_random_walk

    A loop-erased random walk in 2D for steps. In mathematics, loop-erased random walk is a model for a random simple path with important applications in combinatorics, physics and quantum field theory. It is intimately connected to the uniform spanning tree, a model for a random tree.

  7. Persistent random walk - Wikipedia

    en.wikipedia.org/wiki/Persistent_random_walk

    The persistent random walk is a modification of the random walk model. A population of particles are distributed on a line, with constant speed c 0 {\displaystyle c_{0}} , and each particle's velocity may be reversed at any moment.

  8. Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Brownian_motion

    2-dimensional random walk of a silver adatom on an Ag(111) surface [1] Simulation of the Brownian motion of a large particle, analogous to a dust particle, that collides with a large set of smaller particles, analogous to molecules of a gas, which move with different velocities in different random directions.

  9. Continuous-time random walk - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_random_walk

    In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times. [1] [2] [3] More generally it can be seen to be a special case of a Markov renewal process.