Search results
Results from the WOW.Com Content Network
The multilevel regression is the use of a multilevel model to smooth noisy estimates in the cells with too little data by using overall or nearby averages. One application is estimating preferences in sub-regions (e.g., states, individual constituencies) based on individual-level survey data gathered at other levels of aggregation (e.g ...
One application of multilevel modeling (MLM) is the analysis of repeated measures data. Multilevel modeling for repeated measures data is most often discussed in the context of modeling change over time (i.e. growth curve modeling for longitudinal designs); however, it may also be used for repeated measures data in which time is not a factor.
A multilevel model, however, would allow for different regression coefficients for each predictor in each location. Essentially, it would assume that people in a given location have correlated incomes generated by a single set of regression coefficients, whereas people in another location have incomes generated by a different set of coefficients.
Multi-level regression can refer to: Multi-level modelling in general; more specifically, to Multilevel regression with poststratification
Hierarchical linear models (or multilevel regression) organizes the data into a hierarchy of regressions, for example where A is regressed on B, and B is regressed on C. It is often used where the variables of interest have a natural hierarchical structure such as in educational statistics, where students are nested in classrooms, classrooms ...
In econometrics, the seemingly unrelated regressions (SUR) [1]: 306 [2]: 279 [3]: 332 or seemingly unrelated regression equations (SURE) [4] [5]: 2 model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially ...
The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.