enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...

  3. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    Here, the single-stranded DNA curls around in a long circle stabilized by telomere-binding proteins. [68] At the very end of the T-loop, the single-stranded telomere DNA is held onto a region of double-stranded DNA by the telomere strand disrupting the double-helical DNA and base pairing to one of the two strands.

  4. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    DNA is made up of a double helix of two complementary strands. DNA is often called double helix. The double helix describes the appearance of a double-stranded DNA which is composed of two linear strands that run opposite to each other and twist together. [6] During replication, these strands are separated.

  5. DNA synthesis - Wikipedia

    en.wikipedia.org/wiki/DNA_synthesis

    These enzymes, along with accessory proteins, form a macromolecular machine which ensures accurate duplication of DNA sequences. Complementary base pairing takes place, forming a new double-stranded DNA molecule. This is known as semi-conservative replication since one strand of the new DNA molecule is from the 'parent' strand.

  6. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    DNA replication. The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T ...

  7. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    The double helix is an important tertiary structure in nucleic acid molecules which is intimately connected with the molecule's secondary structure. A double helix is formed by regions of many consecutive base pairs. The nucleic acid double helix is a spiral polymer, usually right-handed, containing two nucleotide strands which base pair together.

  8. Sticky and blunt ends - Wikipedia

    en.wikipedia.org/wiki/Sticky_and_blunt_ends

    When a molecule of DNA is double stranded, as DNA usually is, the two strands run in opposite directions. Therefore, one end of the molecule will have the 3' end of strand 1 and the 5' end of strand 2, and vice versa in the other end. [2] However, the fact that the molecule is two stranded allows numerous different variations.

  9. Chargaff's rules - Wikipedia

    en.wikipedia.org/wiki/Chargaff's_rules

    The first rule holds that a double-stranded DNA molecule, globally has percentage base pair equality: A% = T% and G% = C%. The rigorous validation of the rule constitutes the basis of Watson–Crick base pairs in the DNA double helix model.