enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Embryonic stem cell - Wikipedia

    en.wikipedia.org/wiki/Embryonic_stem_cell

    Embryonic stem cells is one of the sources that are being considered for the use of tissue engineering. [19] The use of human embryonic stem cells have opened many new possibilities for tissue engineering, however, there are many hurdles that must be made before human embryonic stem cell can even be utilized.

  3. Stem cell - Wikipedia

    en.wikipedia.org/wiki/Stem_cell

    Some stem cells form tumors after transplantation; [106] pluripotency is linked to tumor formation especially in embryonic stem cells, fetal proper stem cells, induced pluripotent stem cells. Fetal proper stem cells form tumors despite multipotency. [107] Ethical concerns are also raised about the practice of using or researching embryonic stem ...

  4. Human embryonic development - Wikipedia

    en.wikipedia.org/wiki/Human_embryonic_development

    As the syncytiotrophoblast starts to penetrate the uterine wall, the inner cell mass (embryoblast) also develops. The inner cell mass is the source of embryonic stem cells, which are pluripotent and can develop into any one of the three germ layer cells, and which have the potency to give rise to all the tissues and organs.

  5. Epiblast-derived stem cell - Wikipedia

    en.wikipedia.org/wiki/Epiblast-derived_stem_cell

    Naïve pluripotent stem cells (e.g. ESC) and primed pluripotent stem cells (e.g. EpiSC) not only sustain the ability to self-renew but also maintain the capacity to differentiate. [2] Since the cell status is primed to differentiate in EpiSCs, however, one copy of the X chromosome in XX cells (female cells) in EpiSCs is silenced (XaXi).

  6. Epigenetics in stem-cell differentiation - Wikipedia

    en.wikipedia.org/wiki/Epigenetics_in_stem-cell...

    Embryonic stem cells exhibit dramatic and complex alterations to both global and site-specific chromatin structures. Lee et al. performed an experiment to determine the importance of deacetylation and acetylation for stem cell differentiation by looking at global acetylation and methylation levels at certain site-specific modification in histone sites H3K9 and H3K4.

  7. Embryomics - Wikipedia

    en.wikipedia.org/wiki/Embryomics

    The cells of the inner cell mass (embryoblast), which are known as human embryonic stem cells (hESCs), will further differentiate to form four structures: the amnion, the yolk sac, the allantois, and the embryo itself. Human embryonic stem cells are pluripotent, that is, they can differentiate into any of the cell types present in the adult ...

  8. Embryoid body - Wikipedia

    en.wikipedia.org/wiki/Embryoid_body

    Embryoid bodies (EBs) are three-dimensional aggregates formed by pluripotent stem cells. These include embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) EBs are differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. They mimic the characteristics seen in early-stage embryos.

  9. Amniotic stem cells - Wikipedia

    en.wikipedia.org/wiki/Amniotic_stem_cells

    The majority of stem cells present in the amniotic fluid share many characteristics, which suggests they may have a common origin. [1]In 2007, it was confirmed that the amniotic fluid contains a heterogeneous mixture of multipotent cells after it was demonstrated that they were able to differentiate into cells from all three germ layers but they could not form teratomas following implantation ...