Search results
Results from the WOW.Com Content Network
In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint (or adjoint) operator on that space according to the rule A x , y = x , A ∗ y , {\displaystyle \langle Ax,y\rangle =\langle x,A^{*}y\rangle ,}
In mathematics, a self-adjoint operator on a complex vector space V with inner product , is a linear map A (from V to itself) that is its own adjoint. That is, A x , y = x , A y {\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle } for all x , y {\displaystyle x,y} ∊ V .
In general, any operator in a Hilbert space that acts by permuting an orthonormal basis is unitary. In the finite dimensional case, such operators are the permutation matrices. On the vector space C of complex numbers, multiplication by a number of absolute value 1, that is, a number of the form e iθ for θ ∈ R, is a unitary operator.
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint.
The last property given above shows that if one views as a linear transformation from Hilbert space to , then the matrix corresponds to the adjoint operator of . The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis.
In mathematics, the term adjoint applies in several situations. Several of these share a similar formalism: if A is adjoint to B, then there is typically some formula of the type (Ax, y) = (x, By). Specifically, adjoint or adjunction may mean: Adjoint of a linear map, also called its transpose in case of matrices
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [ 1 ] [ 2 ] It is occasionally known as adjunct matrix , [ 3 ] [ 4 ] or "adjoint", [ 5 ] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose .