Search results
Results from the WOW.Com Content Network
English: Linear Algebra by Jim Hefferon, along with its answers to exercises, is a text for a first undergraduate course. It is Free. Use it as the main book, as a supplement, or for independent study.
Concerning general linear maps, linear endomorphisms, and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other parts of mathematics.
There is a straightforward process to convert any linear program into one in standard form, so using this form of linear programs results in no loss of generality. In geometric terms, the feasible region defined by all values of x {\displaystyle \mathbf {x} } such that A x ≤ b {\textstyle A\mathbf {x} \leq \mathbf {b} } and ∀ i , x i ≥ 0 ...
Two optimal control design methods have been widely used in industrial applications, as it has been shown they can guarantee closed-loop stability. These are Model Predictive Control (MPC) and linear-quadratic-Gaussian control (LQG). The first can more explicitly take into account constraints on the signals in the system, which is an important ...
The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) project is a modern replacement of LAPACK for multi-core architectures. PLASMA is a software framework for development of asynchronous operations and features out of order scheduling with a runtime scheduler called QUARK that may be used for any code that expresses its ...
In model predictive controllers that consist only of linear models, the superposition principle of linear algebra enables the effect of changes in multiple independent variables to be added together to predict the response of the dependent variables. This simplifies the control problem to a series of direct matrix algebra calculations that are ...
This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices. Linear equations
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.