Search results
Results from the WOW.Com Content Network
That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line = /. This distance can be found by first solving the linear systems {= + = /, and {= + = /, to get the coordinates of the intersection points. The solutions to the linear systems are the points
The distance between two points in physical space is the length ... The same sense of distance is used in Euclidean geometry to define distance from a point to a ...
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
The shortest distance along the surface of a sphere between two points on the surface is along the great-circle which contains the two points. The great-circle distance article gives the formula for calculating the shortest arch length D {\displaystyle D} on a sphere about the size of the Earth.
The space M is a length space (or the metric d is intrinsic) if the distance between any two points x and y is the infimum of lengths of paths between them. Unlike in a geodesic metric space, the infimum does not have to be attained.