Search results
Results from the WOW.Com Content Network
C# doesn't support automatic unboxing in the same meaning as Java, because it doesn't have a separate set of primitive types and object types. All types that have both primitive and object version in Java, are automatically implemented by the C# compiler as either primitive (value) types or object (reference) types.
In class-based programming, downcasting, or type refinement, is the act of casting a base or parent class reference, to a more restricted derived class reference. [1] This is only allowable if the object is already an instance of the derived class, and so this conversion is inherently fallible.
Existing Eiffel software uses the string classes (such as STRING_8) from the Eiffel libraries, but Eiffel software written for .NET must use the .NET string class (System.String) in many cases, for example when calling .NET methods which expect items of the .NET type to be passed as arguments. So, the conversion of these types back and forth ...
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
Primitive wrapper classes are not the same thing as primitive types. Whereas variables, for example, can be declared in Java as data types double, short, int, etc., the primitive wrapper classes create instantiated objects and methods that inherit but hide the primitive data types, not like variables that are assigned the data type values.
How can an object's instantiation be deferred to a subclass? Create an object by calling a factory method instead of directly calling a constructor. This enables the creation of subclasses that can change the way in which an object is created (for example, by redefining which class to instantiate).
Discover and modify source-code constructions (such as code blocks, classes, methods, protocols, etc.) as first-class objects at runtime. Convert a string matching the symbolic name of a class or function into a reference to or invocation of that class or function. Evaluate a string as if it were a source-code statement at runtime.
The std::string class is the standard representation for a text string since C++98. The class provides some typical string operations like comparison, concatenation, find and replace, and a function for obtaining substrings. An std::string can be constructed from a C-style string, and a C-style string can also be obtained from one. [7]