Search results
Results from the WOW.Com Content Network
Theta-pinch, or θ-pinch, is a type of fusion power reactor design. The name refers to the configuration of currents used to confine the plasma fuel in the reactor, arranged to run around a cylinder in the direction normally denoted as theta in polar coordinate diagrams.
Screw pinch – A combination of a Z-pinch and theta pinch [15] (also called a stabilized Z-pinch, or θ-Z pinch) [16] [17] Reversed field pinch or toroidal pinch – This is a Z-pinch arranged in the shape of a torus. The plasma has an internal magnetic field. As distance increases from the center of this ring, the magnetic field reverses ...
These systems were originally referred to simply as pinch or Bennett pinch (after Willard Harrison Bennett), but the introduction of the θ-pinch (theta pinch) concept led to the need for clearer, more precise terminology. The name refers to the direction of the current in the devices, the Z-axis on a Cartesian three-dimensional graph. Any ...
The Lorentz force created by a lightning strike crushed this hollow lightning rod and led to the discovery of the pinch technique. An alternate approach was the "pinch" concept, developed in the United Kingdom. [3] Unlike the magnetic bottle approaches, in a pinch device, the required magnetic field was created by the plasma itself. Since the ...
The FRC was first observed in laboratories in the late 1950s during theta pinch experiments with a reversed background magnetic field. [3] The original idea was attributed to the Greek scientist and engineer Nicholas C. Christofilos who developed the concept of E-layers for the Astron fusion reactor.
The STX was motivated by a discovery from an unrelated experiment; a few years previously, the Large-S Experiment (LSX) had demonstrated the existence of a kinetically stabilized parameter regime which appeared advantageous for a fusion reactor. However, the LSX experiment formed FRCs in a power-hungry, violent way called a theta-pinch.
The concept was first developed by Martin David Kruskal and Vitaly Shafranov, who noticed that the plasma in pinch effect reactors would be stable if q was larger than 1. Macroscopically, this implies that the wavelength of the potential instability is longer than the reactor. This condition is known as the Kruskal–Shafranov limit.
Weinberg angle θ W, and relation between couplings g, g ′, and e = g sin θ W.Adapted from Lee (1981). [1] The pattern of weak isospin, T 3, and weak hypercharge, Y W, of the known elementary particles, showing electric charge, Q, [a] along the Weinberg angle.