Search results
Results from the WOW.Com Content Network
Theta-pinch was developed primarily in the United States, mostly at the Los Alamos National Laboratory (LANL) in a series of machines known as Scylla. In 1958, Scylla I was the first machine to clearly demonstrate thermonuclear fusion reactions of deuterium in a controlled manner.
Screw pinch – A combination of a Z-pinch and theta pinch [15] (also called a stabilized Z-pinch, or θ-Z pinch) [16] [17] Reversed field pinch or toroidal pinch – This is a Z-pinch arranged in the shape of a torus. The plasma has an internal magnetic field. As distance increases from the center of this ring, the magnetic field reverses ...
The FRC was first observed in laboratories in the late 1950s during theta pinch experiments with a reversed background magnetic field. [3] The original idea was attributed to the Greek scientist and engineer Nicholas C. Christofilos who developed the concept of E-layers for the Astron fusion reactor.
These systems were originally referred to simply as pinch or Bennett pinch (after Willard Harrison Bennett), but the introduction of the θ-pinch (theta pinch) concept led to the need for clearer, more precise terminology. The name refers to the direction of the current in the devices, the Z-axis on a Cartesian three-dimensional graph. Any ...
The q profile in a reversed field pinch The poloidal field in a reversed field pinch. A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch that uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion.
The problems in z-pinch led to the tokamak design. The dense plasma focus is a possibly superior variation. Theta-pinch: A current circles around the outside of a plasma column, in the theta direction. This induces a magnetic field running down the center of the plasma, as opposed to around it.
His team of scientists used advanced theta-pinch techniques to harness fusion reactions. In 1955, a year after Fortune Magazine named him as one of the top 10 scientists in U.S. industry, Hurwitz contributed to establishing the first atomic containment sphere for GE .
The Large Helical Device (大型ヘリカル装置, Ōgata Herikaru Sōchi) (LHD) is a fusion research device located in Toki, Gifu, Japan.It is operated by the National Institute for Fusion Science, and is the world's second-largest superconducting stellarator, after Wendelstein 7-X.