Search results
Results from the WOW.Com Content Network
The surface energy of a liquid may be measured by stretching a liquid membrane (which increases the surface area and hence the surface energy). In that case, in order to increase the surface area of a mass of liquid by an amount, δA, a quantity of work, γ δA, is needed (where γ is the surface energy density of the liquid).
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [3] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
During this process, surface tension decrease as function of time and finally approach the equilibrium surface tension (σ equilibrium). [3] Such a process is illustrated in figure 1. (Image was reproduced from reference) [2] Figure 1: Migration of surfactant molecules and change of surface tension (σ t1 > σ t2 > σ equilibrium).
Upon introducing surfactants (or any surface active materials) into a system, they will initially partition into the interface, reducing the system free energy by: [citation needed] lowering the energy of the interface (calculated as area times surface tension), and; removing the hydrophobic parts of the surfactant from contact with water.
The Helmholtz free energy is defined as [3], where . F is the Helmholtz free energy (sometimes also called A, particularly in the field of chemistry) (SI: joules, CGS: ergs),; U is the internal energy of the system (SI: joules, CGS: ergs),
If surface tension is high, there is a large free energy required to increase the surface area, so the surface will tend to contract and hold together like a rubber sheet. There are various factors affecting surface tension, one of which is that the composition of the surface may be different from the bulk.
The surface energy is measured in units of joules per square meter, which is equivalent in the case of liquids to surface tension, measured in newtons per meter.The overall surface tension/energy of a liquid can be acquired through various methods using a tensiometer or using the pendant drop method and maximum bubble pressure method.
This may be written in the following form, known as the Ostwald–Freundlich equation: =, where is the actual vapour pressure, is the saturated vapour pressure when the surface is flat, is the liquid/vapor surface tension, is the molar volume of the liquid, is the universal gas constant, is the radius of the droplet, and is temperature.