Search results
Results from the WOW.Com Content Network
The important sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. [1]
Water chemistry analysis is often the groundwork of studies of water quality, pollution, hydrology and geothermal waters. Analytical methods routinely used can detect and measure all the natural elements and their inorganic compounds and a very wide range of organic chemical species using methods such as gas chromatography and mass spectrometry .
Bacterial activity in sewers – anaerobic sulfate reduction at work in the organic-rich sludges accumulated under water in the conduits produces hydrogen sulfide gas (H 2 S). After its released in the air of the galleries, H 2 S is further oxidized into sulfuric acid by atmospheric oxygen.
The uptake of sulfate by the roots and its transport to the shoot is strictly controlled and it appears to be one of the primary regulatory sites of sulfur assimilation. [3] Sulfate is actively taken up across the plasma membrane of the root cells, subsequently loaded into the xylem vessels and transported to the shoot by the transpiration stream.
Rain falling over a drainage basin in Scotland.Understanding the cycling of water into, through, and out of catchments is a key element of hydrology. Hydrology (from Ancient Greek ὕδωρ (húdōr) 'water' and -λογία () 'study of') is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and ...
The sulfur cycle. Under anaerobic conditions, sulfate is reduced to sulfide by sulfate reducing bacteria, such as Desulfovibrio and Desulfobacter. SO 2− 4 + 4H 2 → H 2 S + 2H 2 O + 2OH −. Sulfide Oxidation. Under aerobic conditions, sulfide is oxidized to sulfur and then sulfate by sulfur oxidizing bacteria, such as Thiobacillus ...
In bacteria, sulfate and thiosulfate are transported into the cell by sulfate permeases where it can then be reduced and incorporated into biomolecules. [14] In some organisms (e.g., gut flora , cyanobacteria , and yeast ), [ 15 ] assimilatory sulfate reduction is a more complex process that makes use of the enzymes ATP sulfurylase, APS kinase ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate