Search results
Results from the WOW.Com Content Network
The operator is said to be positive-definite, and written >, if , >, for all {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,
Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).
Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.
This is not true in general for Kraus operators obtained from square root factorizations. (Positive semidefinite matrices do not generally have a unique square-root factorizations.) If two sets of Kraus operators {A i} 1 nm and {B i} 1 nm represent the same completely positive map Φ, then there exists a unitary operator matrix
A further property of a Hermitian operator is that eigenfunctions corresponding to different eigenvalues are orthogonal. [1] In matrix form, operators allow real eigenvalues to be found, corresponding to measurements. Orthogonality allows a suitable basis set of vectors to represent the state of the quantum system.
Positive maps are monotone, i.e. () for all self-adjoint elements ,. Since ‖ ‖ ‖ ‖ for all self-adjoint elements , every positive map is automatically continuous with respect to the C*-norms and its operator norm equals ‖ ‖.