Search results
Results from the WOW.Com Content Network
In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter : solid , liquid , and gas , and in rare cases, plasma .
The curves on the phase diagram show the points where the free energy (and other derived properties) becomes non-analytic: their derivatives with respect to the coordinates (temperature and pressure in this example) change discontinuously (abruptly).
A phase-change material (PCM) is a substance which releases/absorbs sufficient energy at phase transition to provide useful heat or cooling. ... Example: eutectic ...
The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases ...
The term phase is sometimes used as a synonym for state of matter, but it is possible for a single compound to form different phases that are in the same state of matter. For example, ice is the solid state of water, but there are multiple phases of ice with different crystal structures, which are formed at different pressures and temperatures.
One example of deposition is the process by which, in sub-freezing air, water vapour changes directly to ice without first becoming a liquid. This is how frost and hoar frost form on the ground or other surfaces, including leaves. For deposition to occur, thermal energy must be removed from a gas.
When a substance undergoes a phase transition (changes from one state of matter to another) it usually either takes up or releases energy. For example, when water evaporates, the increase in kinetic energy as the evaporating molecules escape the attractive forces of the liquid is reflected in a decrease in temperature.
For example, d-wave or triplet superconductor, or a Fulde–Ferrell–Larkin–Ovchinnikov superconductor. Ferromagnetic superconductor: Materials that display intrinsic coexistence of ferromagnetism and superconductivity. Charge-4e superconductor: A proposed state in which electrons are not bound as Cooper pairs but as quadruplets of electrons.