Search results
Results from the WOW.Com Content Network
An inverted vee antenna is a type of antenna similar to a horizontal dipole, but with the two sides bent down towards the ground, typically creating a 120- or 90-degree angle between the dipole legs. It is typically used in areas of limited space as it can significantly reduce the ground foot print of the antenna without significantly impacting ...
Typical antenna parameters are gain, bandwidth, radiation pattern, beamwidth, polarization, impedance; These are imperative communicative means. The antenna pattern is the response of the antenna to a plane wave incident from a given direction or the relative power density of the wave transmitted by the antenna in a given direction. For a ...
The far-field pattern of an antenna may be determined experimentally at an antenna range, or alternatively, the near-field pattern may be found using a near-field scanner, and the radiation pattern deduced from it by computation. [1] The far-field radiation pattern can also be calculated from the antenna shape by computer programs such as NEC.
Inverted-'V' antenna When the two arms of a dipole are individually straight, but bent towards each other in a 'V' shape, at an angle noticeably less than 180°, the dipole is called a 'V' antenna, and when the dipole arms' end closer to the ground than their center branch-point, the antenna is called an inverted-'V' . The inverted-'V' is ...
Louis Varney (G5RV) invented this antenna in 1946. [4] It is very popular in the United States. [5] The antenna can be erected as horizontal dipole, as sloper, or an inverted-V antenna. With a transmatch, (antenna tuner) it can operate on all HF amateur radio bands (3.5–30 MHz). [5] [6]
The AT&T receiving Beverage antenna (left) and radio receiver (right) at Houlton, Maine, used for transatlantic telephone calls, from a 1920s magazine. The Beverage antenna or "wave antenna" is a long-wire receiving antenna mainly used in the low frequency and medium frequency radio bands, invented by Harold H. Beverage in 1921. [1]
A reconfigurable antenna is an antenna capable of modifying its frequency and radiation properties dynamically, in a controlled and reversible manner. [2] In order to provide a dynamic response, reconfigurable antennas integrate an inner mechanism (such as RF switches, varactors, mechanical actuators or tunable materials) that enable the intentional redistribution of the RF currents over the ...
Tests done by J.S. Belrose (1994) [7] showed that though the conventional T²FD length is close to a full-size 80 meter (3.5–4.0 MHz) antenna, the antenna starts to suffer serious signal loss both on transmit and receive below 10 MHz (30 m), with the 80 meter band signals −10 dB down (90% power loss) from a reference dipole at 10 MHz.