Search results
Results from the WOW.Com Content Network
Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. [2] Using Wolfram's classification scheme , Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour. This rule is of particular interest because it produces complex, seemingly random patterns from simple, well-defined rules.
Examples are rules 4, 108, 218 and 250. Class 3: Cellular automata which appear to remain in a random state. Examples are rules 22, 30, 126, 150, 182. Class 4: Cellular automata which form areas of repetitive or stable states, but also form structures that interact with each other in complicated ways. An example is rule 110.
The number of possible rules, R, for a generalized cellular automaton in which each cell may assume one of S states as determined by a neighborhood size of n, in a D-dimensional space is given by: R=S S (2n+1) D. The most common example has S = 2, n = 1 and D = 1, giving R = 256. The number of possible rules has an extreme dependence on the ...
For next-nearest-neighbor cellular automata, a rule is specified by 2 5 = 32 bits, and the cellular automaton rule space is a 32-dimensional unit hypercube. A distance between two rules can be defined by the number of steps required to move from one vertex, which represents the first rule, and another vertex, representing another rule, along ...
Byl's automaton consisted of an array of 12 chips — of which 4 or 5 could be counted as the instruction tape — and 43 transition rules, while Langton's device consisted of some 10×15 chips, including an instruction tape of 33 chips, plus some 190 transition rules.
Therefore, by the Curtis–Hedlund–Lyndon theorem, the time-reversed dynamics of the cellular automaton may itself be generated using a different cellular automaton rule. [3] However, the neighborhood of a cell in the reverse automaton may be significantly larger than the neighborhood of the same cell in the forward automaton. [5] [6]
For instance, in this notation, Conway's Game of Life is denoted 23/3. [2] [3] In the notation used by the Golly open-source cellular automaton package and in the RLE format for storing cellular automaton patterns, a rule is written in the form By/Sx where x and y are the same as in the MCell notation. Thus, in this notation, Conway's Game of ...
Download QR code; Print/export Download as PDF; ... Pages in category "Cellular automaton rules" ... Rule 30; Rule 90; Rule 110;