Search results
Results from the WOW.Com Content Network
The antipodal map preserves orientation (is homotopic to the identity map) [2] when is odd, and reverses it when is even. Its degree is ( − 1 ) n + 1 . {\displaystyle (-1)^{n+1}.} If antipodal points are identified (considered equivalent), the sphere becomes a model of real projective space .
The two dashed paths shown above are homotopic relative to their endpoints. The animation represents one possible homotopy. In topology, two continuous functions from one topological space to another are called homotopic (from Ancient Greek: ὁμός homós "same, similar" and τόπος tópos "place") if one can be "continuously deformed" into the other, such a deformation being called a ...
Two chain homotopic maps f and g induce the same maps on homology because (f − g) sends cycles to boundaries, which are zero in homology. In particular a homotopy equivalence is a quasi-isomorphism. (The converse is false in general.)
The degree of a map is a homotopy invariant; moreover for continuous maps from the sphere to itself it is a complete homotopy invariant, i.e. two maps ,: are homotopic if and only if = (). In other words, degree is an isomorphism between [ S n , S n ] = π n S n {\displaystyle \left[S^{n},S^{n}\right]=\pi _{n}S^{n}} and Z {\displaystyle ...
the inclusion, a retraction is a continuous map r such that =, that is, the composition of r with the inclusion is the identity of A. Note that, by definition, a retraction maps X onto A. A subspace A is called a retract of X if such a retraction exists. For instance, any non-empty space retracts to a point in the obvious way (any constant map ...
The map hd A + d B h is easily verified to induce the zero map on homology, for any h. It immediately follows that f and g induce the same map on homology. One says f and g are chain homotopic (or simply homotopic), and this property defines an equivalence relation between chain maps. Let X and Y be topological spaces.
The null homotopic class acts as the identity of the group addition, and for X equal to S n (for positive n) — the homotopy groups of spheres — the groups are abelian and finitely generated. If for some i all maps are null homotopic, then the group π i consists of one element, and is called the trivial group.
Two maps , are called homotopic relative to A if they are homotopic by a basepoint-preserving homotopy : [,] such that, for each p in and t in [,], the element (,) is in A. Note that ordinary homotopy groups are recovered for the special case in which A = { x 0 } {\displaystyle A=\{x_{0}\}} is the singleton containing the base point.