enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    Abstract homotopy theory is an axiomatic approach to homotopy theory. Such axiomatization is useful for non-traditional applications of homotopy theory. One approach to axiomatization is by Quillen's model categories. A model category is a category with a choice of three classes of maps called weak equivalences, cofibrations and fibrations ...

  3. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    The homotopy groups are fundamental to homotopy theory, which in turn stimulated the development of model categories. It is possible to define abstract homotopy groups for simplicial sets. Homology groups are similar to homotopy groups in that they can represent "holes" in a topological space. However, homotopy groups are often very complex and ...

  4. Homotopy - Wikipedia

    en.wikipedia.org/wiki/Homotopy

    Given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair of continuous maps f : X → Y and g : Y → X, such that g ∘ f is homotopic to the identity map id X and f ∘ g is homotopic to id Y. If such a pair exists, then X and Y are said to be homotopy equivalent, or of the same homotopy type.

  5. Whitehead product - Wikipedia

    en.wikipedia.org/wiki/Whitehead_product

    Sometimes the homotopy groups of a space, together with the Whitehead product operation are called a graded quasi-Lie algebra; ... Elements of homotopy theory.

  6. Toda bracket - Wikipedia

    en.wikipedia.org/wiki/Toda_bracket

    representing an element in the group [,] of homotopy classes of maps from the suspension to , called the Toda bracket of , , and . The map f , g , h {\displaystyle \langle f,g,h\rangle } is not uniquely defined up to homotopy, because there was some choice in choosing the maps from the cones.

  7. Rational homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Rational_homotopy_theory

    Rational homotopy theory revealed an unexpected dichotomy among finite CW complexes: either the rational homotopy groups are zero in sufficiently high degrees, or they grow exponentially. Namely, let X be a simply connected space such that H ∗ ( X , Q ) {\displaystyle H_{*}(X,\mathbb {Q} )} is a finite-dimensional Q {\displaystyle \mathbb {Q ...

  8. A¹ homotopy theory - Wikipedia

    en.wikipedia.org/wiki/A¹_homotopy_theory

    A 1 homotopy theory is founded on a category called the A 1 homotopy category ().Simply put, the A 1 homotopy category, or rather the canonical functor (), is the universal functor from the category of smooth -schemes towards an infinity category which satisfies Nisnevich descent, such that the affine line A 1 becomes contractible.

  9. Homotopy category - Wikipedia

    en.wikipedia.org/wiki/Homotopy_category

    The older definition of the homotopy category hTop, called the naive homotopy category [1] for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps f : X → Y are considered the same in the naive homotopy category if one can be continuously deformed to the other.