Search results
Results from the WOW.Com Content Network
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations .
Viscous drag of fluid in a pipe: Drag force on the immobile pipe restricts the velocity of the fluid through the pipe. [4] [5] In the physics of sports, drag force is necessary to explain the motion of balls, javelins, arrows, and frisbees and the performance of runners and swimmers. [6]
The drag equation may be derived to within a multiplicative constant by the method of dimensional analysis. If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid,
The expression for the drag force given by equation is called Stokes' law. When the value of C d {\displaystyle C_{d}} is substituted in the equation ( 5 ), we obtain the expression for terminal speed of a spherical object moving under creeping flow conditions: [ 11 ]
The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes.
Defining equation SI units Dimension Flow velocity vector field u ... Physics for Scientists and Engineers: With Modern Physics (6th ed.).
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Skin friction drag is caused by the viscosity of fluids and is developed from laminar drag to turbulent drag as a fluid moves on the surface of an object. Skin friction drag is generally expressed in terms of the Reynolds number , which is the ratio between inertial force and viscous force.