Search results
Results from the WOW.Com Content Network
Parasitic drag, or profile drag, is the sum of viscous pressure drag (form drag) and drag due to surface roughness (skin friction drag). Additionally, the presence of multiple bodies in relative proximity may incur so called interference drag, which is sometimes described as a component of parasitic drag. In aeronautics the parasitic drag and ...
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations. [2]
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Skin friction drag is caused by the viscosity of fluids and is developed from laminar drag to turbulent drag as a fluid moves on the surface of an object. Skin friction drag is generally expressed in terms of the Reynolds number , which is the ratio between inertial force and viscous force.
An object falling through water or oil would slow down at a greater rate, until eventually reaching a steady-state velocity as the drag force comes into equilibrium with the force from gravity. This is the concept of viscous drag, which for example is applied in automatic doors or anti-slam doors. [14]
is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. If the fluid is a liquid, c d {\displaystyle c_{\rm {d}}} depends on the Reynolds number ; if the fluid is a gas, c d {\displaystyle c_{\rm {d}}} depends on both the Reynolds number and the Mach number .
Parasitic drag, also known as profile drag, [1]: 254 [2]: 256 is a type of aerodynamic drag that acts on any object when the object is moving through a fluid. Parasitic drag is defined as the combination of form drag and skin friction drag .
In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquids.