Search results
Results from the WOW.Com Content Network
A Tutorial on Face Recognition Using Eigenfaces and Distance Classifiers; Matlab example code for eigenfaces; OpenCV + C++Builder6 implementation of PCA; Java applet demonstration of eigenfaces Archived 2011-11-01 at the Wayback Machine; Introduction to eigenfaces; Face Recognition Function in OpenCV; Eigenface-based Facial Expression ...
This comparison of optical character recognition software includes: OCR engines, that do the actual character identification; Layout analysis software, that divide scanned documents into zones suitable for OCR; Graphical interfaces to one or more OCR engines
OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly for real-time computer vision. [2] Originally developed by Intel, it was later supported by Willow Garage, then Itseez (which was later acquired by Intel [3]).
VTK consists of a C++ class library and several interpreted interface layers including Tcl/Tk, Java, and Python.The toolkit is created and supported by the Kitware team. VTK supports a various visualization algorithms including: scalar, vector, tensor, texture, and volumetric methods; and advanced modeling techniques such as: implicit modeling, polygon reduction, mesh smoothing, cutting ...
Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.
F(0) = 1.0; D(0) = 1.0; i = 0 while F(i) > Ftarget increase i n(i) = 0; F(i)= F(i-1) while F(i) > f × F(i-1) increase n(i) use P and N to train a classifier with n(i) features using AdaBoost Evaluate current cascaded classifier on validation set to determine F(i) and D(i) decrease threshold for the ith classifier (i.e. how many weak ...
Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different. Take a face category and a car category for an example.
The additional constraints of the face also allow more opportunities for using models and rules. Facial expression capture is similar to facial motion capture. It is a process of using visual or mechanical means to manipulate computer generated characters with input from human faces , or to recognize emotions from a user.