Search results
Results from the WOW.Com Content Network
Lis (Library of Iterative Solvers for linear systems; pronounced lis]) is a scalable parallel software library to solve discretized linear equations and eigenvalue problems that mainly arise from the numerical solution of partial differential equations using iterative methods.
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.
The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1: ρ ( D − 1 ( L + U ) ) < 1. {\displaystyle \rho (D^{-1}(L+U))<1.} A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant .
Modern scientific calculators generally have many more capabilities than the original four- or five-function calculator, and the capabilities differ between manufacturers and models. The capabilities of a modern scientific calculator include: Scientific notation; Floating-point decimal arithmetic; Logarithmic functions, using both base 10 and ...
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
There are three types of elementary row operations: [8] Type 1: Swap the positions of two rows. Type 2: Multiply a row by a nonzero scalar. Type 3: Add to one row a scalar multiple of another. Because these operations are reversible, the augmented matrix produced always represents a linear system that is equivalent to the original.
For example, the principal square root of 9 is 3, which is denoted by √ 9 = 3, because 3 2 = 3 • 3 = 9 and 3 is nonnegative. However raising x to the power of 0.5 using the y x key works if the number is entered as a real number with a complex part equal to zero. [ 11 ]