Search results
Results from the WOW.Com Content Network
The Flory–Fox equation relates the number-average molecular weight, M n, to the glass transition temperature, T g, as shown below: =, where T g,∞ is the maximum glass transition temperature that can be achieved at a theoretical infinite molecular weight and K is an empirical parameter that is related to the free volume present in the polymer sample.
The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. [2]
In 1996, Monsanto (who sold PHB as a copolymer with PHV) bought all patents for making the polymer from ICI/Zeneca including the trademark "Biopol". [5] However, Monsanto's rights to Biopol were sold to the American company Metabolix in 2001 and Monsanto's fermenters producing PHB from bacteria were closed down at the start of 2004.
Crystallization affects optical, mechanical, thermal and chemical properties of the polymer. The degree of crystallinity is estimated by different analytical methods and it typically ranges between 10 and 80%, with crystallized polymers often called "semi-crystalline". The properties of semi-crystalline polymers are determined not only by the ...
Changes in an amorphous polymer may involve other sub-Tg thermal transitions associated with short molecular segments, side-chains and branches. The linearity of the sf-TM curve will be changed by such transitions. Other relaxations may be due to release of internal stress arising from the non-equilibrium state of the glassy amorphous polymer.
PTMC is a predominantly amorphous polymer in the relaxed state but it can present some crystallinity, particularly when the chains are stretched. [ 4 ] The polymer presents glass transition temperature ( T g {\displaystyle T_{g}} ) between -15 and -30 °C and melting temperature ( T m {\displaystyle T_{m}} ) ranging from 38 to 41°C.
Moreover, at constant frequency, an increase in temperature results in a reduction of the modulus due to an increase in free volume and chain movement. Time–temperature superposition is a procedure that has become important in the field of polymers to observe the dependence upon temperature on the change of viscosity of a polymeric fluid.
It is a synthetic acrylate polymer derived from butyl acrylate monomer. The polymers are colorless. This homopolymer is far less important than copolymers derived from methyl acrylate and other monomers. It has a low glass-transition temperature of about -43 °C (20 °C). [clarification needed]