Search results
Results from the WOW.Com Content Network
Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics. New York: Charles Scribner's Sons . Sommerfeld, Arnold ; ed: F. Bopp, J. Meixner (1952).
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation.
Biswa Ranjan Nag (1 October 1932 – 6 April 2004) was an Indian physicist and the Sisir Kumar Mitra chair professor at Rajabazar Science College, University of Calcutta. Known for his research in semiconductor physics , Nag was an elected fellow of the Indian National Science Academy and Indian Academy of Sciences .
Download as PDF; Printable version; In other projects Wikimedia Commons; Wikiversity; ... Chemical engineering thermodynamics (11 P) Cooling technology (13 C, 158 P)
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
A thermodynamic system is a macroscopic object, the microscopic details of which are not explicitly considered in its thermodynamic description. The number of state variables required to specify the thermodynamic state depends on the system, and is not always known in advance of experiment; it is usually found from experimental evidence.
Altitude (or elevation) is usually not a thermodynamic property. Altitude can help specify the location of a system, but that does not describe the state of the system. An exception would be if the effect of gravity need to be considered in order to describe a state, in which case altitude could indeed be a thermodynamic property.
The basic thermodynamic potential is internal energy.In a simple fluid system, neglecting the effects of viscosity, the fundamental thermodynamic equation is written: = + where U is the internal energy, T is temperature, S is entropy, P is the hydrostatic pressure, V is the volume, is the chemical potential, and M mass.